

MODIFIED FOR DISTRIBUTION

Recent Progress in Non-Resonant Inelastic X-ray Scattering

Alfred Q. R. Baron

Materials Dynamics Group RIKEN SPring-8 Center

Presented at the 11th International Conference on Inelastic X-Ray Scattering (IXS 2019) 26 June 2019

> AQRB June 2019

Outline

Main Target: What has been happening the last few years (in-house)

Transformation from making the BL & Spectrometers run -> specific experimental goals

Introduction: Orientation & Context

Progress in High Pressure DAC Work:
5 um Beam, Soller Screen for Background Reduction
Applications in a talk by E. Ohtani

Progress with Liquids:

Practical sub-meV setup for sub nm⁻¹
Crossover from hydrodynamic to fast sound in liquid iron

Progress using thermal currents to manipulate phonons
How to break detailed balance in an interesting way
Investigate microsecond-scale phonon lifetimes in silicon

Collaborators

High Pressure: H. Fukui, Y. Nakajima, D. Ishikawa, et al.
Ohtani Lab (Tkuta) Hinasa Lab (FLST)

Ohtani-Lab (Ikuta), Hirose-Lab (ELSI)

Liquids: D. Ishikawa (T-Gradient), M. Inui (High T), et al

Thermal line-width: T. Fukuda & D. Ishikawa

D. Ishikawa MDG & JASRI

H. Fukui MDG & U. Hyogo

Y. Nakajima MDG & Kumamoto U.

T. Fukuda MDG & JAEA

K. Hirose ELSI & Todai

M. Inui Hiroshima U

AQRB June 2019

meV-resolved non-resonant IXS to investigate atomic dynamics.

Phonons in Crystals, excitations in liquids, etc.

Measure the Dynamic Structure Factor, S(Q,w)

Vienna Summer School: Dorner, Fujii, Hastings, Moncton, Siddons et al (1980)
(Priv. Comm. & Notes from D. Moncton)

BL Proposal: Dorner & Peisl (1983)

First Phonons (Be) at DESY: Burkel, Peisl, Dorner (1987)

3rd Generation beamline (ID16) at ERSF : Sette, Ruocco, Krisch *et al* (1995)

Presently

1 Beamline (ID28) at ESRF (Shutdown for Upgrade)

2 Beamlines (Sector 3 and Sector 30) at APS 2 Beamlines (BL35 and BL43LXU) at SPring-8

(1 Beamline at NSLS-II (Different setup, PSC))

Review: Springer Handbook & arXiv 1504.01098

The First meV Instrument at SPring-8 (BL35XU)

Operational from ~2002

Baron, Tanaka, et al, J. Phys. Chem. Solids (2000)

AQRB June 2019

Higher Flux for IXS

-> Propose a new beamline (BL43LXU) using a long (30m) straight section

In-Vacuum ID technology well matched to IXS (15-25keV) at 8 GeV Short (19mm) period/small (6mm) gap ID: Fundamental -> Win/Win: more flux & less heat load per unit flux

Note: After BL43 Discussions, request (granted) to upgrade BL35 ID

Support from the Scientific Community

AQRB June 2019

BL43LXU Collaborators

RIKEN-JASRI Collaboration

Electron Optics: Kouchi SOUTOME, Hitoshi TANAKA Insertion Devices: Takashi TANAKA, Hideo KITAMURA

Mono & Cooling: Tetsuro MOCHIZUKI

Front End: Sunao TAKAHASHI

Hutches and Shielding: Kunikazu TAKESHITA

Transport Channel & Optics: Haruhiko OHASHI, Shunji GOTO

Spectrometer (2008-): Daisuke ISHIKAWA

More Complete List of Contributors Includes:

M. Abe, H. Aoyagi, H. Arita, N. Azumi, D. Ellis, K. Fukami, H. Fukui, Y. Furukawa, S. Goto, Y. Harada, D. Ishikawa, Y. Ishizawa, H. Kimura, H. Kitamura, H. Konishi, T. Matsushita, Y. Matsumoto, T. Mochizuki, N. Murai, H. Ohashi, T. Ohata, H. Ohkuma, M. Oishi, M. Oura, S. Sasaki, J. Schimizu, Y. Senba, M. Shoji, K. Sorimachi, K. Soutome, S. Takahashi, M. Takata, K. Takeshita, T. Takeuchi, H. Tanaka, T. Tanaka, S. Tsutsui, H. Uchiyama, T. Wagai, J. Yahiro, M. Yamamoto, H. Yamazaki

Director/Facilitator: T. ISHIKAWA

Growing Pains

 3×5 m/6mm gap IDs, 2 Spectrometers (IXS/EE)

Full power operation from April of 2015

Steering the e- beam through 3 IDs (more careful feedback)
Heating/Melting of ID covers (intra-ID absorber -> Few% losses)
Beam spatial structure due to mirrors (improved polishing -> OK)
Technology Transfer for HR analyzers (New company taught)
Difficult fabrication of MR analyzers (New process developed)
Stability of M1 (AB Correct Toyama's design)

Note: Problems involving ring systems (e-beam, IDs) take ~year time scales to diagnose and fix. Others mostly faster.

IXS & Geoscience

Earth's Center, 365 GPa >~5000K

Velocity (and ρ) well know from seismic measurements. Needed: Lab measurements relating T, Density & Composition to P

A catalogue of sound velocities in extreme conditions...

AQRB June 2019

SPring.

IXS with Diamond Anvil Cells (DACS)

High Pressure: Squeeze the sample between two diamonds

Diamonds: 2×1.5 mm Thick (typical) Sample: $\sim 20-200$ um diam. $\times \sim 2-20$ um thick Scattering from C, gasket & pressure medium **Higher P** -> smaller sample, harder expt.

Elliptical KB (Multilayer) for 17.8 keV Accepts: 1 x 3mm² Focus Size: 5 x 5 um² (FWHM) Throughput ~ 60%

Baron, Ishikawa, Fukui & Nakajima, Y. (2019). *AIP Conf. Proc.* **2054**, 20002. DOI: 10.1063/1.5084562.

Herizontal (ong) Menor. Beam in: 0.2 mm x 1 mm

2 0.5 0.5 10 15 10

High T: (Double Sided) Laser Heating

Dedicated Systems Tohoku/RIKEN Tokyo Tech

"Soller Screen"

HP DAC work limited by background from diamonds (or Be gasket) ie: parasitic scattering from within a few mm of the sample

Usual Solution: A small slit near the sample to limit the (One Detector) view to only the sample

For IXS: Would like a Soller slit but spacing is prohibitively small (~50 um spacing needed)

"Soller Screen": Two Flat W plates at 5 mm and 10mm from the sample with laser cut slots

Accepts beam to every other (every second) analyzer (24→12) and drastically

reduces the background

Baron, Ishikawa, Fukui & Nakajima, Y. (2019). *Conf. Proc.* **2054**, 20002. DOI: 10.1063/1.5084562.

AQRB June 2019

HP DAC Work

Program looking at Elasticity/ C_{ij} in single crystals via Christofel's eqn (Fukui, Yoneda & Co-Workers)

Program looking at liquids (HP/HT) including iron & related materials (Nakajima, Kuwayama, Hirose, et al)

Program looking at powder samples (iron & others, mostly HP, some HT)
(Sakamaki, Fukui, Ikuta, Ohtani, et al)

"Using an x-ray scattering beamline
to change the composition of the Earth's core"
Talk by E. Ohtani (Thursday PM)

Program Looking at Hydrogen
H₃S (Fukui, Nakajima, et al)
Hydrogen Solid Vibron (Liu, Ding, Mao, et al)
Liquid Hydrogen Vibron (AB, DI, Liu, Mao, et al) MR & HR

Liquids

Essentially impossible to separate structure from dynamics

Long-standing area of interest as IXS is, mostly, a unique probe at Q->0. (IXS: E >>> Energy-Transfer, INS: Energy ≈ Energy-Transfer -> limits INS E range)

Liquid Mg, Kawakita, et al 2004

Points of Interest:
Acoustic Dispersion/Fast Sound
Acoustic line-width
Quasi-elastic line-width
Transverse dynamics
Landau-Placzek?

Usual Focus: Crossover from continuum to atomistic behavior
-> Lower Q and higher resolution is critical

AQRB June 2019

Sound Crossover in Water

Sette et al, prl 1995

Sette et al, prl 1996

Analyzer Masks & Soller Slit

Slits at fixed |Q| Improves Rates for fixed Q Resolution dQ/Q~ 10% Limits acceptance to near the sample Reduces background from Windows & Sample Environment

Baron, Ishikawa, Fukui & Nakajima, Y. (2019). Conf. Proc. 2054, 20002. DOI: 10.1063/1.5084562.

AQRB June 2019

Temperature Gradient Analyzers

to Improve Resolution

BL43 Analyzers: 9.8 m Radius, 90x94 mm² on a Rectangular Substrate

Usual operation is slightly off of the ideal Roland Circle

-> Helps if you vary "d" using a T-Gradient

Make the analyzer substrate part of a thermal circuit

Si (13 13 13): ~0.95 -> 0.75 meV at 25.7 keV

Ishikawa & Baron, JSR 2010 Ishikawa, Ellis, Uchiyama & Baron, JSR 2015

Practical: Reduce BW onto BX to 0.2 eV (x3)

Geological Relevance!

More Fundamental Physics

Liquid TMs have a relatively high specific heat ratio.

$$\gamma \equiv \frac{C_p}{C_v} \sim 1.8$$
 Liquid Fe, Ni, Co...

Relation to Landau-Placzek Ratio (hydrodynamics):

$$\frac{I_R}{2I_B} = \frac{Quasieleastic}{Phonon} = \gamma - 1$$

Hosokawa, et al PRB 2008

AQRB June 2019

Liquids at High Temperature

Basically two options for ~day-long expts:

Levitation -> typically mm scale samples -> light materials only Sample Cell -> requires sealed (single crystal) cell for high T

Extensive experience (Hiroshima U.) with cells milled out of single crystal sapphire (Tamura, Inui & Hosokawa, RSI 1999)

And in principle the right environment ("Marburg Chamber" - Hosokawa & Pilgrim, RSI2001)

But the chamber failed

Heaters (W or Mo) died too quickly at ~1600C One run ~30 hours, but never again. (Weeks of work by MI) Looked (AB) like a contamination / sealing issue

-> New chamber using carbon composite heater 8 days at ~1600C, Multiple cycles OK

Liquid Iron IXS Data

T ~ 1560 C

Si (13 13 13), 0.8 meV at 25.702 keV 1 or 2 analyzers only (time limited) Si (11 11 11), 1.3 meV at 21.747 keV 24 Analyzer Array

Blue = IXS Data (no bkgd subtraction)
Red = Background (scaled by transmission)

Baron, Inui, Ishikawa, Kajihara, Nakajima, Matsuda, et al., In progress

AQRB June 2019

Iron Fit Results (dho)

Unpublished results removed

Detailed Balance

Symmetry property of scattering from a sample in thermal equilibrium

$$S(\mathbf{Q},-\omega) = e^{-\hbar\omega/k_BT} S(\mathbf{Q},\omega)$$

The anti-stokes $(E,\omega<0)$ side is a lower-intensity copy of the stokes $(E,\omega>0)$ side with the intensity scale factor set by the energy transfer and the temperature

Really just a statement about the population of bosons in thermal equilibrium...

Thermal Conductivity

Insulators

A Boltzmann transport equation relates the local temperature gradient to the deviation of phonon populations from their equilibrium value

$$\nabla T$$
 related to $n_s - \overline{n}_s$

Generally complex (all phonon scattering mechanisms need to be included, etc...)
BUT: often simplified by a "life-time approximation" LTA by assuming each phonon mode has a lifetime and if a thermal gradient is removed it will exponentially relax to its equilibrium population with that lifetime...

$$n_s - \overline{n}_s = -\tau_s \frac{\partial \overline{n}_s}{\partial T} \mathbf{v}_s \bullet \nabla T$$

 \mathbf{v}_s = phonon group velocity

Phonon Thermal Lifetimes

Anharmonic lifetimes are important for understanding thermal conductivity but it is superficially absurd to use a meV spectrometer to probe thermal lifetimes (excepting extreme cases)

Esfarjani et al PRB 2011 277K

Thermal Lifetime (τ): ns - μ s Line-width (Γ): μ eV - neV $\Gamma \tau = \hbar = 0.66 \text{ meV-ps}$

Work at the intersection of:

Detailed Balance &

Thermal Conductivity

AQRB June 2019

One-Phonon Cross Section

Harmonic Approximation

$$S_{s}(\mathbf{Q},\omega) = \left| \mathbf{F}_{s}(\mathbf{Q}) \right|^{2} \delta_{\mathbf{Q}-\mathbf{q},\tau} \left[n_{s} \delta(\omega + \omega_{s}) + (n_{s} + 1) \delta(\omega - \omega_{s}) \right]$$

$$s = \mathbf{q}, j = \text{Phonon Mode} \qquad \begin{cases} n_s = \left\langle a_s^+ a_s \right\rangle \\ n_s + 1 = \left\langle a_s a_s^+ \right\rangle \end{cases} \qquad |F_s(\mathbf{Q})|^2 = \frac{1}{\omega_s} \left| \sum_d \frac{f_d(\mathbf{Q})}{\sqrt{2M_d}} e^{-W_d} \mathbf{Q} \bullet \mathbf{e}_{sd} e^{i\mathbf{Q} \bullet \mathbf{r}_d} \right|^2$$

Thermal Equilibrium:
$$n_s = \overline{n}_s \equiv \frac{1}{e^{\hbar \omega_s/k_BT} - 1}$$
 $\frac{S(\mathbf{Q}, \omega_s)}{S(\mathbf{Q}, -\omega_s)} = \frac{\overline{n}_s + 1}{\overline{n}_s} = e^{\hbar \omega_s/k_BT}$

$$T_{DB} = \frac{\hbar \omega_s}{k_B \ln(I_+ / I_-)}$$

Ingredients

1. Use IXS to measure phonon populations via the asymmetry

$$T_{DB} = \frac{\hbar \omega_s}{k_B \ln(I_+ / I_-)} \qquad \frac{n_s + 1}{n_s} = e^{\hbar \omega_s / k_B T_{DB}}$$

2. A relation between experimentally determined quantities and the phonon thermal lifetime

$$n_s - \overline{n}_s = -\tau_s \frac{\partial \overline{n}_s}{\partial T} \mathbf{v}_s \bullet \nabla T$$

Note the dot product -> Effect depends on the relative direction of the phonon group velocity and the thermal gradient

Acoustic Modes
High Symmetry Directions

 $\mathbf{q} \parallel \mathbf{v}_s$

AQRB June 2019

Data - Control

Silicon Wafer $0.28 \times 1.7 \times 8 \text{ mm}^3$

Mounted inside a Be Cap With Exchange Gas With Thermal Shielding

i.e. Standard Operating
Procedure

Measure at Q = (4 -4 0) or (4 4 0) +- q q parallel and perpendicular to axis of eventual gradient e.g. q=(0.018 -0.018 0) Δq=(0.004 0.006 0.005) rlu

Slits: 6x6 mm² 9m from sample

Data With A Gradient

Thermal Linewidths

Reasonable violation of detailed balance. The symmetry is broken by breaking the condition (thermal equilibrium) where it applies.

Probe of lifetimes on the us scale (comparable to a linewidth < 1 neV) by coupling to the phonon via a thermal gradient

No scattering method can do this directly (measure linewidth).... INS has good resolution but dispersing modes only to ueV level

Messages to Take Home

BL43LXU is beginning to do experiments that are difficult elsewhere using both an excellent beamline and additional specific instrumentation

Robust program going to extreme conditions (P/T) in DACs.

Ongoing work to make practical measurements with high resolution at low momentum transfers for higher Z liquid investigations.

Push toward a 2000C sample environment (1600 OK, 1990 done, but not yet stable) Extend fundamental understanding of liquids

Violation of detailed balance in a reasonable fashion & a new method of probing thermal linewidths. Possible Relevance to Spintronics, Thermal diodes, etc

Note: this talk only touched on a few aspects of a larger experimental program(s)

Magneto-elastic coupling & 7T Magnet Superconductors & Ferroelectrics Single Crystal Elasticity (w/DAC) Vibron in liquid and solid hydrogen. (Phonons in H_3S) Electronic excitations w/25 meV resolution (NRIXS - Sr_2CuO_3 , etc) Continuous parameter analysis of liquid spectra Symmetry based model for intensity fitting of phonon spectra

